skip to main content


Search for: All records

Creators/Authors contains: "Dwyer, J. R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this study, we analyze 44 terrestrial gamma-ray flashes (TGFs) detected by the Fermi Gamma-ray Burst Monitor (GBM) occurring in 2014–2016 in conjunction with data from the U.S. National Lightning Detection Network (NLDN). We examine the characteristics of magnetic field waveforms measured by NLDN sensors for 61 pulses that occurred within 5 ms of the start-time of the TGF photon flux. For 21 (out of 44) TGFs, the associated NLDN pulse occurred almost simultaneously with (that is, within 200 μs of) the TGF. One TGF had two NLDN pulses within 200 μs. The median absolute time interval between the beginning of these near-simultaneous pulses and the TGF flux start-time is 50 μs. We speculate that these RF pulses are signatures of either TGF-associated relativistic electron avalanches or currents traveling in conducting paths “preconditioned” by TGF-associated electron beams. Compared to pulses that were not simultaneous with TGFs (but within 5 ms of one), simultaneous pulses had higher median absolute peak current (26 kA versus 11 kA), longer median threshold-to-peak rise time (14 μs versus 2.8 μs), and longer median peak-to-zero time (15 μs versus 5.5 μs). A majority (77%) of our simultaneous RF pulses had NLDN-estimated peak currents less than 50 kA indicating that TGF emissions can be associated with moderate-peak-amplitude processes. The lightning flash associated with one of the TGFs in our data set was observed by a Lightning Mapping Array, which reported a relatively high-power source at an altitude of 25 km occurring 101 μs after the GBM-reported TGF discovery-bin start-time. 
    more » « less
  2. Abstract

    We report on three classes of terrestrial gamma ray flashes (TGFs) from the (RHESSI) satellite. The first class drives the detectors into paralysis, being observed usually through a few counts on the rising edge and the later tail of Comptonized photons. These events—and any bright TGF—reveal their true luminosity more clearly via their Compton tail than via the main peak, since the former is unaffected by the unknown beaming pattern of the unscattered radiation, and Comptonization mostly isotropizes the flux. This technique could be applied to TGFs from any mission. The second class is more than usually bright and long in duration. When the magnetic field at the conjugate point is stronger than at the nearby footpoint, we find that 4 out of 11 such events show a significant signal at the time expected for a relativistic electron beam to make a round trip to the opposite footpoint and back. We conclude that a large fraction of TGFs lasting more than a few hundred microseconds may include counts due to the upward moving secondary particle beam ejected from the atmosphere. Finally, using a new search algorithm to find short TGFs in RHESSI, we see that these tend to occur more often over the oceans than land, relative to longer‐duration events. In the feedback model of TGF production, this suggests a higher thunderstorm potential, since more feedback per avalanche implies fewer “generations” of avalanches needed to complete the TGF discharge.

     
    more » « less
  3. Abstract

    We present an event that was detected byFermiGamma‐ray Burst Monitor on 4 February 2014 as the spacecraft was flying over Madagascar. We interpret the three pulses during this event (herein known as 140204581) as the following: the first pulse as a terrestrial gamma‐ray flash, the second as a 2 ms long terrestrial electron beam (TEB) 0.5 ms after the terrestrial gamma‐ray flash, and the last pulse as the TEB mirror pulse 90 ms after the TEB. The nature of these events were confirmed using both the World Wide Lightning Location Network and the Earth Networks Total Lightning Network, which detected the same simultaneous sferic underneath the spacecraft and in the magnetic footprint. Several models were fit to the data, and results show that the vertical narrow beam model was found to be inconsistent with the data.

     
    more » « less